Post link 22 July 2015, 22:09
<<< PAGE 1

AUTHOR: ANDY GREENBERG. DATE OF PUBLICATION: 07.21.15. TIME OF PUBLICATION: 6:00 AM.

http://www.wired.com/wp-content/uploads/2015/07/150701_car_hackers_05.jpgCharlie Miller. WHITNEY CURTIS FOR WIRED

So the next year, they signed up for mechanic’s accounts on the websites of every major automaker and downloaded dozens of vehicles’ technical manuals and wiring diagrams. Using those specs, they rated 24 cars, SUVs, and trucks on three factors they thought might determine their vulnerability to hackers: How many and what types of radios connected the vehicle’s systems to the Internet; whether the Internet-connected computers were properly isolated from critical driving systems, and whether those critical systems had “cyberphysical” components—whether digital commands could trigger physical actions like turning the wheel or activating brakes.

Based on that study, they rated Jeep Cherokee the most hackable model. Cadillac’s Escalade and Infiniti’s Q50 didn’t fare much better; Miller and Valasek ranked them second- and third-most vulnerable. When WIRED told Infiniti that at least one of Miller and Valasek’s warnings had been borne out, the company responded in a statement that its engineers “look forward to the findings of this [new] study” and will “continue to integrate security features into our vehicles to protect against cyberattacks.” Cadillac emphasized in a written statement that the company has released a new Escalade since Miller and Valasek’s last study, but that cybersecurity is “an emerging area in which we are devoting more resources and tools,” including the recent hire of a chief product cybersecurity officer.

After Miller and Valasek decided to focus on the Jeep Cherokee in 2014, it took them another year of hunting for hackable bugs and reverse-engineering to prove their educated guess. It wasn’t until June that Valasek issued a command from his laptop in Pittsburgh and turned on the windshield wipers of the Jeep in Miller’s St. Louis driveway.

Since then, Miller has scanned Sprint’s network multiple times for vulnerable vehicles and recorded their vehicle identification numbers. Plugging that data into an algorithm sometimes used for tagging and tracking wild animals to estimate their population size, he estimated that there are as many as 471,000 vehicles with vulnerable Uconnect systems on the road.

Pinpointing a vehicle belonging to a specific person isn’t easy. Miller and Valasek’s scans reveal random VINs, IP addresses, and GPS coordinates. Finding a particular victim’s vehicle out of thousands is unlikely through the slow and random probing of one Sprint-enabled phone. But enough phones scanning together, Miller says, could allow an individual to be found and targeted. Worse, he suggests, a skilled hacker could take over a group of Uconnect head units and use them to perform more scans—as with any collection of hijacked computers—worming from one dashboard to the next over Sprint’s network. The result would be a wirelessly controlled automotive botnet encompassing hundreds of thousands of vehicles.

“For all the critics in 2013 who said our work didn’t count because we were plugged into the dashboard,” Valasek says, “well, now what?”

http://www.wired.com/wp-content/uploads/2015/07/150701_car_hackers_04.jpg
Chris Valasek. WHITNEY CURTIS FOR WIRED


Congress Takes on Car Hacking

Now the auto industry needs to do the unglamorous, ongoing work of actually protecting cars from hackers. And Washington may be about to force the issue.

Later today, senators Markey and Blumenthal intend to reveal new legislation designed to tighten cars’ protections against hackers. The bill (which a Markey spokesperson insists wasn’t timed to this story) will call on the National Highway Traffic Safety Administration and the Federal Trade Commission to set new security standards and create a privacy and security rating system for consumers. “Controlled demonstrations show how frightening it would be to have a hacker take over controls of a car,” Markey wrote in a statement to WIRED. “Drivers shouldn’t have to choose between being connected and being protected…We need clear rules of the road that protect cars from hackers and American families from data trackers.”

Markey has keenly followed Miller and Valasek’s research for years. Citing their 2013 Darpa-funded research and hacking demo, he sent a letter to 20 automakers, asking them to answer a series of questions about their security practices. The answers, released in February, show what Markey describes as “a clear lack of appropriate security measures to protect drivers against hackers who may be able to take control of a vehicle.” Of the 16 automakers who responded, all confirmed that virtually every vehicle they sell has some sort of wireless connection, including Bluetooth, Wi-Fi, cellular service, and radios. (Markey didn’t reveal the automakers’ individual responses.) Only seven of the companies said they hired independent security firms to test their vehicles’ digital security. Only two said their vehicles had monitoring systems that checked their CAN networks for malicious digital commands.

UCSD’s Savage says the lesson of Miller and Valasek’s research isn’t that Jeeps or any other vehicle are particularly vulnerable, but that practically any modern vehicle could be vulnerable. “I don’t think there are qualitative differences in security between vehicles today,” he says. “The Europeans are a little bit ahead. The Japanese are a little bit behind. But broadly writ, this is something everyone’s still getting their hands around.”

http://www.wired.com/wp-content/uploads/2015/07/150701_car_hackers_49-582x388.jpgMiller (left) and Valasek demonstrated the rest of their attacks on the Jeep while I drove it around an empty parking lot. WHITNEY CURTIS FOR WIRED

Aside from wireless hacks used by thieves to open car doors, only one malicious car-hacking attack has been documented: In 2010 a disgruntled employee in Austin, Texas, used a remote shutdown system meant for enforcing timely car payments to brick more than 100 vehicles. But the opportunities for real-world car hacking have only grown, as automakers add wireless connections to vehicles’ internal networks. Uconnect is just one of a dozen telematics systems, including GM Onstar, Lexus Enform, Toyota Safety Connect, Hyundai Bluelink, and Infiniti Connection.

In fact, automakers are thinking about their digital security more than ever before, says Josh Corman, the cofounder of I Am the Cavalry, a security industry organization devoted to protecting future Internet-of-things targets like automobiles and medical devices. Thanks to Markey’s letter, and another set of questions sent to automakers by the House Energy and Commerce Committee in May, Corman says, Detroit has known for months that car security regulations are coming.

But Corman cautions that the same automakers have been more focused on competing with each other to install new Internet-connected cellular services for entertainment, navigation, and safety. (Payments for those services also provide a nice monthly revenue stream.) The result is that the companies have an incentive to add Internet-enabled features—but not to secure them from digital attacks. “They’re getting worse faster than they’re getting better,” he says. “If it takes a year to introduce a new hackable feature, then it takes them four to five years to protect it.”

Corman’s group has been visiting auto industry events to push five recommendations: safer design to reduce attack points, third-party testing, internal monitoring systems, segmented architecture to limit the damage from any successful penetration, and the same Internet-enabled security software updates that PCs now receive. The last of those in particular is already catching on; Ford announced a switch to over-the-air updates in March, and BMW used wireless updates to patch a hackable security flaw in door locks in January.

Corman says carmakers need to befriend hackers who expose flaws, rather than fear or antagonize them—just as companies like Microsoft have evolved from threatening hackers with lawsuits to inviting them to security conferences and paying them “bug bounties” for disclosing security vulnerabilities. For tech companies, Corman says, “that enlightenment took 15 to 20 years.” The auto industry can’t afford to take that long. “Given that my car can hurt me and my family,” he says, “I want to see that enlightenment happen in three to five years, especially since the consequences for failure are flesh and blood.”

As I drove the Jeep back toward Miller’s house from downtown St. Louis, however, the notion of car hacking hardly seemed like a threat that will wait three to five years to emerge. In fact, it seemed more like a matter of seconds; I felt the vehicle’s vulnerability, the nagging possibility that Miller and Valasek could cut the puppet’s strings again at any time.

The hackers holding the scissors agree. “We shut down your engine—a big rig was honking up on you because of something we did on our couch,” Miller says, as if I needed the reminder. “This is what everyone who thinks about car security has worried about for years. This is a reality.”

1Correction 10:45 7/21/2015: An earlier version of the story stated that the hacking demonstration took place on Interstate 40, when in fact it was Route 40, which coincides in St. Louis with Interstate 64.
Topic edited 1 times, last edit by RouTe, 22 July 2015, 22:14  

You Lie Because You Are Scared